
import pandas as pd

import statsmodels.api as sm

import numpy as np

from scipy.stats import norm

数据读取和参数设置

df = pd.read_excel('aaaa.xls')

df['const'] = 1

CPC = 0.673

price_com = 8.187

comment_com = 0

定义变量名集合

dummy_vars = [f'dummy_{i}' for i in list(range(2, 60)) + list(range(61, 125)) + list(range(126, 151))]

base_vars = ['const', 'cost', 'cost2', 'display_quantity', 'phrase', 'exact', 'price_com', 'comment_com']

定义回归变量集

xm_vars = base_vars + ['jiaohu1', 'jiaohu2', 'jiaohu3', 'jiaohu4'] + dummy_vars

my_vars = base_vars + ['click_number', 'jiaohu5', 'jiaohu6'] + dummy_vars

xy_vars = base_vars + dummy_vars

def calculate_effects(xm_params, my_params, xy_params):

 """计算各种效应"""

 effect_x_on_m = (xm_params['cost'] + xm_params['cost2'] * CPC +

 xm_params['jiaohu3'] * price_com + xm_params['jiaohu4'] * price_com * CPC +

 xm_params['jiaohu1'] * comment_com + xm_params['jiaohu2'] * comment_com * CPC)

 effect_m_on_y = (my_params['click_number'] + my_params['jiaohu5'] * price_com +

 my_params['jiaohu6'] * comment_com)

 direct_effect = my_params['cost'] + my_params['cost2'] * CPC

 indirect_effect = effect_x_on_m * effect_m_on_y

 total_effect = xy_params['cost'] + xy_params['cost2'] * CPC

 return effect_x_on_m, effect_m_on_y, direct_effect, indirect_effect, total_effect

def run_regressions(data):

 """运行三个回归模型"""

 med = data['click_number']

 y = data['sales_volume']

 # 运行回归

 xm_result = sm.OLS(med, data[xm_vars]).fit(cov_type='HC3')

 my_result = sm.OLS(y, data[my_vars]).fit(cov_type='HC3')

 xy_result = sm.OLS(y, data[xy_vars]).fit(cov_type='HC3')

 return calculate_effects(xm_result.params, my_result.params, xy_result.params)

def bootstrap_analysis(n_bootstrap=1000):

 """Bootstrap 分析"""

 print("开始 Bootstrap 分析...")

 # 原始样本计算

 original_effects = run_regressions(df)

 effect_x_on_m, effect_m_on_y, direct_effect, indirect_effect, total_effect = original_effects

 # Bootstrap 采样

 bootstrap_results = {

 'effect_x_on_m': [],

 'effect_m_on_y': [],

 'direct_effect': [],

 'indirect_effect': [],

 'total_effect': []

 }

 for i in range(n_bootstrap):

 if (i + 1) % 100 == 0:

 print(f"Bootstrap 进度: {i + 1}/{n_bootstrap}")

 # 重采样

 boot_data = df.sample(n=len(df), replace=True)

 boot_effects = run_regressions(boot_data)

 # 存储结果

 for j, key in enumerate(bootstrap_results.keys()):

 bootstrap_results[key].append(boot_effects[j])

 # 计算统计量

 results = {}

 effect_names = ['effect_x_on_m', 'effect_m_on_y', 'direct_effect', 'indirect_effect', 'total_effect']

 original_values = [effect_x_on_m, effect_m_on_y, direct_effect, indirect_effect, total_effect]

 for i, (name, original_val) in enumerate(zip(effect_names, original_values)):

 boot_values = np.array(bootstrap_results[name])

 # 计算统计量

 std_err = np.std(boot_values)

 z_value = original_val / std_err if std_err != 0 else 0

 p_value = 2 * (1 - norm.cdf(abs(z_value)))

 # 计算置信区间

 ci_lower = np.percentile(boot_values, 2.5)

 ci_upper = np.percentile(boot_values, 97.5)

 results[name] = {

 'estimate': original_val,

 'std_err': std_err,

 'z_value': z_value,

 'p_value': p_value,

 'ci_lower': ci_lower,

 'ci_upper': ci_upper

 }

 return results

def print_results(results):

 """打印格式化结果"""

 print("\n" + "="*80)

 print("Bootstrap 中介效应分析结果")

 print("="*80)

 effect_labels = {

 'effect_x_on_m': 'X 对 M 的效应',

 'effect_m_on_y': 'M 对 Y 的效应',

 'direct_effect': '直接效应',

 'indirect_effect': '间接效应',

 'total_effect': '总效应'

 }

 for name, label in effect_labels.items():

 result = results[name]

 print(f"\n{label}:")

 print(f" 估计值: {result['estimate']:.6f}")

 print(f" 标准误: {result['std_err']:.6f}")

 print(f" Z 值: {result['z_value']:.4f}")

 print(f" P 值: {result['p_value']:.4f}")

 print(f" 95%置信区间: [{result['ci_lower']:.6f}, {result['ci_upper']:.6f}]")

 # 显著性标记

 if result['p_value'] < 0.001:

 sig = "***"

 elif result['p_value'] < 0.01:

 sig = "**"

 elif result['p_value'] < 0.05:

 sig = "*"

 else:

 sig = ""

 print(f" 显著性: {sig}")

运行分析

if __name__ == "__main__":

 results = bootstrap_analysis(1000)

 print_results(results)

