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 A B S T R A C T

We present an analysis of carbon abatement regulation through a self-enforcing international environmental 
agreement (IEA) model featuring two types of countries with dissimilar abatement benefits. The IEA involves a 
tax plan function that allocates an emission tax rate to each type of country under every coalition of voluntary 
signatories. An efficient tax plan is one that maximizes social welfare under a stable coalition, while an optimal 
tax plan maximizes the average payoff of a stable coalition. We demonstrate that an efficient or optimal tax 
plan always exists, and that the corresponding value of social welfare or average coalition payoff is greater 
than that under certain traditional tax systems. If the benefit heterogeneity between the two types of countries 
is sufficiently small, full cooperation and social optimum can be achieved or approximated through an efficient 
or optimal plan. Conversely, a high degree of heterogeneity will result in a relatively small coalition and an 
inefficient outcome, regardless of the tax plan employed.
1. Introduction

The regulation of global public goods has been a popular and long-
standing topic in the fields of public and environmental economics. 
Specifically, the issue of climate change has been attributed to excessive 
carbon emissions and has been widely recognized as a significant 
consequence. Due to the presence of externalities, implementing carbon 
abatement measures is not feasible without regulatory intervention. 
In practice, two regulation methods have been commonly used and 
discussed in the literature, namely quantity and price regulation. Quan-
tity regulation involves establishing an emission level quota, while 
price regulation entails imposing an emission fee or tax.1 Under cer-
tain conditions, price regulation has been found to perform better 
than quantity regulation in terms of both abatement level and social 
welfare. Additionally, price regulation has been shown to offer other 
advantages, such as reduced administrative costs and the generation of 
additional tax revenues.

A special type of price regulation is the uniform tax system in which 
the tax rates are the same across all regulated countries.2 Compared to 
more complex tax systems, the merit of this tax system is that it reduces 
potential conflicts during international negotiations while remains the 

∗ Corresponding author.
E-mail address: maoliang@szu.edu.cn (L. Mao).

1 Both regulatory approaches enable the implementation of a system of tradable emission permits.
2 For examples on uniform tax, see Pearce (1991), Hoel (1992), Nordhaus (2006), Weitzman (2014), Cramton et al. (2015), and McEvoy and McGinty (2018).
3 Carraro and Siniscalco (1993) and Barrett (1994) are some of the early studies that considered the IEA model. See also the reviews of Finus (2001) and Carraro 

(2003).

potential to achieve satisfactory regulatory outcomes. Weitzman (2014) 
proved that a tax rate exists that, if globally applied, can help achieve 
a socially optimal outcome even when countries are heterogeneous.

However, as highlighted by McEvoy and McGinty (2018), Weitzman 
(2014) did not consider the issue of voluntary participation. No country 
would voluntarily charge a certain emission tax unless it is in its best 
interests. Hence, we should formally examine the determination of 
the ratio of countries that agree to this tax. In the literature, this is 
sometimes formulated as a two-stage game, often referred to as the 
international environmental agreement (IEA) model. In stage one, some 
countries voluntarily form a coalition and sign a self-enforcing IEA. In 
stage two, all signatories (coalition members) should take action ac-
cording to the agreement.3 The stability concept by d’Aspremont et al. 
(1983) is commonly applied in this model to determine the coalition 
formed in stage one and the resulting ratio of signatory countries. 
After considering the issue of voluntary participation, a uniform tax 
system does not seem to work well compared to the optimistic results 
in Weitzman (2014). Notably, McEvoy and McGinty (2018) showed 
that in a simple model, in which all countries are ex-ante homogeneous 
but only signatories to an IEA should charge the emission tax, only a 
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very small fraction of countries will sign the IEA. The resulting carbon 
abatement is far from a socially optimal level.

Naturally, the following question arises: can a more satisfactory re-
sult of carbon abatement be achieved through a proper (not necessarily 
uniform) tax system within the framework of voluntarily formed coali-
tion? To answer this question, we address the following two relevant 
issues.

One issue that may affect the performance of an IEA is the het-
erogeneity of countries. Earlier works in the IEA literature found that 
the impact of heterogeneity may be complex and diversified (Fuentes-
Albero and Rubio, 2010; Pavlova and de Zeeuw, 2013; Finus and 
McGinty, 2019; Bakalova and Eyckmans, 2019). On the one hand, 
heterogeneity sometimes makes coordinating the abatement levels of 
different countries more difficult, leading to a smaller coalition of 
signatory countries. On the other hand, heterogeneity provides a po-
tential surplus from the cooperation among different countries, and 
hence is good for the formation and stability of large coalitions, es-
pecially when transfers exist among countries. Therefore, the impact 
of heterogeneity on an IEA crucially depends on the model setup. For 
analytical convenience, this study only analyzes a simple setup with 
two types of countries that differ in their abatement benefits4 and does 
not allow payoff transfers among countries. Due to the development of 
international carbon trading markets, we also assume that the marginal 
abatement costs are the same across all countries.

Another important issue is the design of the IEA. A widely adopted 
assumption in the IEA model literature that signatories to an IEA should 
act collectively to maximize a given payoff objective (e.g., the joint pay-
off of the coalition), whether the coalition is stable or not. Although this 
assumption is reasonable for stable coalitions, why the corresponding 
payoff should be maximized for non-stable coalitions remains unclear.5 
To address this question, some recent studies accommodate more gen-
eral classes of IEAs, and endogenously choose an ‘‘optimal’’ one among 
them (Carraro et al., 2009; Köke and Lange, 2017; Mao, 2020; Masoudi, 
2022). For instance, Mao (2020) studied a class of IEA rules wherein a 
signatory’s abatement level depends on the number of signatories, and 
the optimal IEA rule can be properly designed to maximize the payoffs 
to the signatories in stable coalitions. Mao showed that the result can 
be significantly improved relative to the traditional IEA model if we 
only aim for stable coalitions because the superfluous requirement on 
non-stable coalitions will hinder the formation of a large coalition. This 
motivates us to study whether a similar tax system (formally referred to 
as a tax plan in this paper), wherein the tax rate for a signatory depends 
on the coalition of signatories, can achieve greater social welfare than 
traditional tax systems. To reflect the heterogeneity among countries, 
we also allow a country’s tax rate specified by an IEA to vary according 
to its abatement benefit.

In summary, the purpose of this study is to explore the performance 
of an IEA that uses a tax plan under heterogeneous abatement benefits. 
To this end, we extend the traditional IEA model to a three-stage game. 
In stage one, a regulator (for example, the United Nations) designs a 
tax plan in order to achieve a large objective payoff. In stage two, all 
countries simultaneously decide whether to sign the IEA, and those 
signatories form a coalition. In stage three, countries decide on their 
tax rates, where signatories should follow what is specified in the tax 
plan given the coalition formed while the choices of non-signatories are 
not subject to such limitations.

A tax plan is considered efficient (or optimal) if it maximizes the 
expected value of social welfare (or average coalition payoff, respec-
tively) in stage one. We provide an algorithm for calculating an efficient 
(optimal) tax plan for each game (Theorem  1). Under symmetry, an 

4 In practice, some countries (e.g. the Maldives) suffer more from global 
warming, and hence benefit more from carbon emission abatement, than other 
countries (e.g. Russia).

5 See Mao (2018) for a counterexample.
2 
efficient/optimal tax plan can result in full cooperation and social opti-
mum (Propositions  1 and 2). Under small heterogeneity, social welfare 
(or coalition payoff) under an efficient (optimal) tax plan decreases 
with the degree of benefit heterogeneity, but it is unaffected by the 
average level of marginal benefit (Propositions  1 and 3). As the degree 
of heterogeneity becomes larger, simulations show that these results 
would generally hold, except that a smaller coalition may form. Overall, 
our results are more optimistic than McEvoy and McGinty (2018) but 
more pessimistic than Weitzman (2014) regarding the performance of 
global carbon tax system.

One feature that is worth pointing out in our model setup is the 
functional forms. Some studies in the literature adopt a simple setting 
that both benefit and cost functions are linear (Kolstad and Ulph, 2011; 
Ulph et al., 2019). Some other studies work on a more realistic but also 
more complicated assumption that the benefit function is concave and 
the cost function is convex (Barrett, 1994; Weitzman, 2014; McEvoy 
and McGinty, 2018). We adopt a compromise by assuming a linear 
benefit function and a convex cost function (Na and Shin, 1998; Fujita, 
2004; Köke and Lange, 2017; Mao, 2020). Note that some of our 
conclusions depend on the linearity of the benefit function and may not 
necessarily apply for more general functional forms. Unlike the case of 
a general benefit function in which a country’s abatement level may 
decrease in reaction to increased abatement by others, a non-signatory 
country has a dominant abatement level that does not depend on other 
countries’ actions if its benefit function is linear.

The remainder of this paper is organized as follows. After providing 
the model setup in Section 2, we present and solve the three-stage 
IEA game in Section 3. Section 4 shows the existence of efficient 
and optimal tax plans and provides some numerical examples. We 
analyze the properties of these tax plans in Section 5 and examine 
some simulation examples in Section 6. Finally, Section 7 concludes 
the study.

2. The model

2.1. Basic setup

There are two types of countries: 𝐴 and 𝐵. The set of type 𝑘
countries are denoted as 𝑁𝑘, and |𝑁𝑘| = 𝑛𝑘 is the number of type 𝑘
countries, 𝑘 ∈ {𝐴,𝐵}. Let 𝑁 = 𝑁𝐴 ∪𝑁𝐵 and 𝑛 = 𝑛𝐴 + 𝑛𝐵 be the set and 
the number of all countries, respectively.

Each country 𝑖 has a representative firm 𝐹𝑖 and a government 𝐺𝑖. 
Let 𝑥𝑖 ≥ 0 denote the carbon abatement of 𝐹𝑖 below an initial emission 
level 𝑒𝑖. Naturally, 𝑥𝑖 is also the abatement level of country 𝑖. Suppose 
that 𝑒𝑖 is sufficiently large so that we need not consider the constraints 
𝑥𝑖 ≤ 𝑒𝑖 throughout this study. Let 𝑋 =

∑

𝑖∈𝑁 𝑥𝑖 be the total abatement.
Government 𝐺𝑖 collects an emission tax from 𝐹𝑖 at a rate 𝑝𝑖 ≥ 0. The 

tax revenue is 𝜏𝑖(𝑝𝑖, 𝑥𝑖) = 𝑝𝑖(𝑒𝑖−𝑥𝑖), which is retained within the country. 
Let 𝒑 = (𝑝1,… , 𝑝𝑛) denote a tax rate combination, and let 𝑝̄ = 1

𝑛
∑

𝑖∈𝑁 𝑝𝑘
be the average tax rate.

Firm 𝐹𝑖’s cost of abatement is 𝐶(𝑥𝑖) =
1
2𝑥

2
𝑖 . Thus, the profit of 𝐹𝑖 is 

𝜋𝑖 = 𝜋0
𝑖 − 𝐶(𝑥𝑖) − 𝜏𝑖(𝑝𝑖, 𝑥𝑖), (1)

where 𝜋0
𝑖  is 𝐹𝑖’s baseline profit when there is no tax (𝑝𝑖 = 0) and no 

emission reduction (𝑥𝑖 = 0). Assume that all 𝜋0
𝑖  are the same and are 

normalized to 0.
Country 𝑖’s benefit from abatement is 𝐵𝑖(𝑋) = 𝜆𝑖𝑋, where 𝜆𝑖 is its 

marginal benefit. Suppose 𝜆𝑖 = 𝜆𝐴 if 𝑖 ∈ 𝑁𝐴, and 𝜆𝑖 = 𝜆𝐵 if 𝑖 ∈ 𝑁𝐵 , 
where 𝜆𝐴 ≥ 𝜆𝐵 > 0. Thus, the type of country 𝑖 is characterized by 𝜆𝑖. 
Let 𝜆̄ = 1

𝑛
∑

𝑖∈𝑁 𝜆𝑖 =
𝑛𝐴𝜆𝐴+𝑛𝐵𝜆𝐵

𝑛  denote the average marginal benefit.
Since 𝜏𝑖(𝑝𝑖, 𝑥𝑖) is retained within the country, the payoff of country 

𝑖 is 
𝑢𝑖 = 𝐵𝑖(𝑋) + 𝜋𝑖 + 𝜏𝑖(𝑝𝑖, 𝑥𝑖) = 𝜆𝑖𝑋 − 1

2
𝑥2𝑖 . (2)
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Table 1
Notations.
 𝜔 coalition structure 𝛺 set of coalition structures  
 𝜃 tax plan 𝛩 set of tax plans  
 𝛺(𝜃) set of stable coalition structures under 𝜃 𝛩(𝜔) set of essential plans at 𝜔  
 𝛩 set of essential plans 𝜔(𝜃) coalition structure under 𝜃 ∈ 𝛩 
 𝛩0

set of essential plans: 𝜔(𝜃) ≠ (0, 0)  
Given a tax rate combination 𝒑, firm 𝐹𝑖 chooses abatement level 
𝑥𝑖(𝒑) to maximize its profit 𝜋𝑖. From (1), we have 
𝑥𝑖(𝒑) = 𝑝𝑖. (3)

Thus, the total abatement is 
𝑋(𝒑) =

∑

𝑖∈𝑁
𝑥𝑖(𝒑) = 𝑛𝑝̄. (4)

Using (2), (3) and (4), the payoff of country 𝑖 under a given 𝒑 is 

𝑢𝑖(𝒑) = 𝜆𝑖𝑋(𝒑) − 1
2
𝑥𝑖(𝒑)2. (5)

Finally, we define the social welfare 

𝑈 (𝒑) = 1
𝑛
∑

𝑖∈𝑁
𝑢𝑖(𝒑) = 𝜆̄𝑋(𝒑) − 1

2𝑛
∑

𝑖∈𝑁
𝑥𝑖(𝒑)2. (6)

as the average payoff of all countries.

2.2. Two special tax rate combinations

The determination of tax rate combination 𝒑 is a theme of this study. 
In this subsection, we consider two special cases. If 𝒑 is entirely up 
to a global regulator to decide, then the chosen combination 𝒑 must 
be socially optimal in the sense that it maximizes social welfare 𝑈 (𝒑). 
On the other hand, if each 𝑝𝑖 is decided by the government 𝐺𝑖 so that 
country 𝑖’s payoff is maximized given other countries’ tax rates, then all 
governments are involved in a non-cooperative game, and the resulting 
combination 𝒑 should be a Nash equilibrium of this game.

Let 𝒑∗ = (𝑝∗1 ,… , 𝑝∗𝑛) denote a socially optimal combination, and let 
𝒑0 = (𝑝01,… , 𝑝0𝑛) denote a Nash equilibrium combination. Then, 𝑥𝑖(𝒑∗)
and 𝑥𝑖(𝒑0) are country 𝑖’s socially optimal and equilibrium abatement 
levels, respectively.

Lemma  1(a) and 1(b) explicitly characterize the tax rates and the 
corresponding abatement levels in the equilibrium case and the socially 
optimal case, respectively. In addition, Lemma  1(c) suggests that the 
equilibrium abatement level is less than the socially optimal level.

Lemma 1. 
(a) Let 𝑝0𝑖 = 𝜆𝑖, then 𝒑0 = (𝑝01,… , 𝑝0𝑛) is a dominant-strategy equilibrium 

and hence a Nash equilibrium, and 𝑥𝑖(𝒑0) = 𝜆𝑖 for all 𝑖 ∈ 𝑁 .
(b) Let 𝑝∗𝑖 = 𝑛𝜆̄, then 𝒑∗ = (𝑝∗1 ,… , 𝑝∗𝑛) is socially optimal, and 𝑥𝑖(𝒑∗) =

𝑛𝜆̄ for all 𝑖 ∈ 𝑁 .
(c) 𝑥𝑖(𝒑∗) > 𝑥𝑖(𝒑0) for all 𝑖 ∈ 𝑁 .

Proof. (a) Given any 𝑖 ∈ 𝑁 and 𝒑 = (𝑝1,… , 𝑝𝑛) where 𝑝𝑖 ≠ 𝜆𝑖, let 
𝒑𝑖 = (𝑝𝑖1,… , 𝑝𝑖𝑛) such that 𝑝𝑖𝑗 = 𝑝𝑗 for all 𝑗 ≠ 𝑖 and 𝑝𝑖𝑖 = 𝜆𝑖. From (5), 
it follows that 𝑢𝑖(𝒑𝑖) − 𝑢𝑖(𝒑) = 1

2 (𝜆𝑖 − 𝑝𝑖)2 > 0. Therefore, 𝑝𝑖 = 𝜆𝑖 is a 
dominant strategy of 𝐺𝑖. Hence, 𝒑0 = (𝑝01,… , 𝑝0𝑛) is a dominant-strategy 
and Nash equilibrium. From (3), 𝑥𝑖(𝒑0) = 𝜆𝑖 for all 𝑖 ∈ 𝑁 .

(b) Since 𝑈 (𝒑) = 𝜆̄𝑋(𝒑) − 1
2𝑛

∑

𝑖∈𝑁 𝑥𝑖(𝒑)2, we have 𝜕𝑈𝜕𝑥𝑖 = 𝜆̄ − 𝑥𝑖
𝑛 . It 

follows from 𝜕𝑈𝜕𝑥𝑖 = 0 that 𝑥𝑖(𝒑∗) = 𝑛𝜆̄. From (3), 𝑝∗𝑖 = 𝑥𝑖(𝒑∗) = 𝑛𝜆̄.
(c) Evidently, 𝑥𝑖(𝒑∗) = 𝑛𝜆̄ > 𝜆𝑖 = 𝑥𝑖(𝒑0). □

3. The IEA game

In Table  1, we list some notations used in this section for readers’ 
reference.

The result of too much equilibrium emission in Lemma  1(c) arises 
from the incentives of free-riding on other countries’ abating efforts. To 
3 
solve this problem, some countries may voluntarily join a coalition and 
sign an IEA to regulate their own actions. Specifically, an IEA specifies 
a function that assigns a tax rate to each coalition. We refer to this 
function as a tax plan.

Formally, let 𝑚𝐴 ∈ [0, 𝑛𝐴] and 𝑚𝐵 ∈ [0, 𝑛𝐵] denote the number of 
type 𝐴 and 𝐵 signatories to the IEA, respectively. A pair 𝜔 = (𝑚𝐴, 𝑚𝐵)
is called a coalition structure and can fully characterize the coalition. 
Let 𝛺 denote the set of all coalition structures. A tax plan 𝜃 is a two-
variable function that assigns a uniform tax rate 𝜃(𝜔) to each coalition 
structure 𝜔 ∈ 𝛺∖(0, 0). Let 𝛩 denote the set of all tax plans.

The determination of the tax plan and coalition formation can be 
described by a three-stage IEA game 𝐺 (

𝑛𝐴, 𝑛𝐵 , 𝜆𝐴, 𝜆𝐵
)

. In stage one, a 
regulator designs a tax plan 𝜃 with the aim of maximizing an objective 
payoff (either expected social welfare or average coalition payoff, 
which will be formally defined in (23) or (24), respectively). In stage 
two, the governments of all countries decide simultaneously whether to 
join the coalition and sign the IEA to maximize the respective payoffs of 
their own countries, resulting in a coalition structure 𝜔. In stage three, 
each signatory 𝑖 follows the IEA and sets a tax rate that determined by 
the tax plan and the coalition formed: 
𝑝𝑖 = 𝜃(𝜔) + 𝜆𝑖, (7)

while each non-signatory 𝑗 will choose 𝑝𝑗 = 𝜆𝑗 according to Lemma 
1(a), resulting in a tax rate combination 𝒑.

Intuitively, (7) shows that a signatory country 𝑖’s tax rate specified 
by the tax system is the sum of the its dominant rate 𝜆𝑖 and a uniform 
rate 𝜃(𝜔). Note that the dominant rate 𝜆𝑖 is fixed because of the linear 
benefit of abatement function, and does not apply for more general 
functional forms of benefit functions.

Traditional IEA games usually assume that after any coalition is 
formed, a tax rate for signatories will be chosen to maximize the 
objective payoff. By contrast, our tax system is explicitly designed 
before the coalition forms and is more flexible since it only concerns 
the objective payoff under the coalition that forms in the equilibrium 
of game.6 The flexibility of our tax system provides the potential to 
form a larger coalition and achieve a greater objective payoff.

In the following part of this section, we will solve 𝐺 (

𝑛𝐴, 𝑛𝐵 , 𝜆𝐴, 𝜆𝐵
)

by means of backward induction.

3.1. Stage three

In stage three, given a tax plan 𝜃 and a coalition structure 𝜔 =
(

𝑚𝐴, 𝑚𝐵
)

, it follows from (3), (4) and Lemma  1(a) that the abatement of 
a type 𝑘 ∈ {𝐴,𝐵} signatory (cooperator) and non-signatory (outsider) 
are 
𝑥𝐶𝑘 (𝑚𝐴, 𝑚𝐵 ; 𝜃) = 𝜃(𝑚𝐴, 𝑚𝐵) + 𝜆𝑘, if 𝑚𝑘 > 0, (8)

and 
𝑥𝑂𝑘 (𝑚𝐴, 𝑚𝐵 ; 𝜃) = 𝜆𝑘, if 𝑚𝑘 < 𝑛𝑘, (9)

respectively, and the total abatement is 
𝑋(𝑚𝐴, 𝑚𝐵 ; 𝜃) = (𝑚𝐴 + 𝑚𝐵)𝜃(𝑚𝐴, 𝑚𝐵) + 𝑛𝜆̄. (10)

When 𝑚𝑘 > 0, the payoff of a type 𝑘 signatory is 

𝑢𝐶𝑘 (𝑚𝐴, 𝑚𝐵 ; 𝜃) = 𝜆𝑘𝑋(𝑚𝐴, 𝑚𝐵 ; 𝜃) −
1
2
𝑥𝐶𝑘 (𝑚𝐴, 𝑚𝐵 ; 𝜃)2. (11)

6 Later, we will define this coalition as a stable coalition.
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When 𝑚𝑘 < 𝑛𝑘, the payoff of a type 𝑘 non-signatory is 

𝑢𝑂𝑘 (𝑚𝐴, 𝑚𝐵 ; 𝜃) = 𝜆𝑘𝑋(𝑚𝐴, 𝑚𝐵 ; 𝜃) −
1
2
𝑥𝑂𝑘 (𝑚𝐴, 𝑚𝐵 ; 𝜃)2. (12)

Social welfare under 𝜃 and 𝜔 =
(

𝑚𝐴, 𝑚𝐵
) is 

𝑉 (𝑚𝐴, 𝑚𝐵 ; 𝜃) =
[

𝑚𝐴𝑢
𝐶
𝐴(𝑚𝐴, 𝑚𝐵 ; 𝜃) + (𝑛𝐴 − 𝑚𝐴)𝑢𝑂𝐴(𝑚𝐴, 𝑚𝐵 ; 𝜃)

+ 𝑚𝐵𝑢
𝐶
𝐵 (𝑚𝐴, 𝑚𝐵 ; 𝜃) + (𝑛𝐵 − 𝑚𝐵)𝑢𝑂𝐵 (𝑚𝐴, 𝑚𝐵 ; 𝜃)

]

∕𝑛.
(13)

When (𝑚𝐴, 𝑚𝐵) ≠ (0, 0), average coalition payoff is 

𝑌 (𝑚𝐴, 𝑚𝐵 ; 𝜃) =
[

𝑚𝐴𝑢
𝐶
𝐴(𝑚𝐴, 𝑚𝐵 ; 𝜃) + 𝑚𝐵𝑢

𝐶
𝐵 (𝑚𝐴, 𝑚𝐵 ; 𝜃)

]

∕(𝑚𝐴 + 𝑚𝐵). (14)

3.2. Stage two

In stage two of 𝐺 (

𝑛𝐴, 𝑛𝐵 , 𝜆𝐴, 𝜆𝐵
)

, given tax plan 𝜃, the government 
of a country will choose to join the coalition unless it is strictly better 
off otherwise. Following (d’Aspremont et al., 1983), a coalition is 
considered stable relative to 𝜃, if
𝑢𝐶𝐴(𝑚𝐴, 𝑚𝐵 ; 𝜃) ≥ 𝑢𝑂𝐴(𝑚𝐴 − 1, 𝑚𝐵 ; 𝜃), when 𝑚𝐴 > 0; (15)

𝑢𝐶𝐵 (𝑚𝐴, 𝑚𝐵 ; 𝜃) ≥ 𝑢𝑂𝐵 (𝑚𝐴, 𝑚𝐵 − 1; 𝜃), when 𝑚𝐵 > 0; (16)

𝑢𝑂𝐴(𝑚𝐴, 𝑚𝐵 ; 𝜃) > 𝑢𝐶𝐴(𝑚𝐴 + 1, 𝑚𝐵 ; 𝜃), when 𝑚𝐴 < 𝑛𝐴; (17)

𝑢𝑂𝐵 (𝑚𝐴, 𝑚𝐵 ; 𝜃) > 𝑢𝐶𝐵 (𝑚𝐴, 𝑚𝐵 + 1; 𝜃), when 𝑚𝐵 < 𝑛𝐵 . (18)

Conditions (15) and (16) show that no signatory will unilaterally leave 
the coalition (internally stable), while (17) and (18) imply that no 
non-signatory will unilaterally join the coalition (externally stable).

If a coalition is stable relative to 𝜃, we may equivalently say that its 
coalition structure is stable relative to 𝜃. Let 𝛺(𝜃) denote the set of all 
stable coalition structures relative to 𝜃.

Given a tax plan 𝜃, only those coalitions that are stable relative to 𝜃
can be formed. However, stable coalitions do not always exist. That is, 
𝛺(𝜃) may sometimes be empty. For example, suppose 𝑛𝐴 = 𝑛𝐵 = 1, 
𝜆𝐴 = 𝜆𝐵 = 2. We define a tax plan 𝜃1, where 𝜃1(0, 1) = 0.1 and 
𝜃1(1, 0) = 𝜃1(1, 1) = 0. It is easy to verify that 𝑢𝑂𝐴(0, 0; 𝜃1) = 𝑢𝐶𝐴(1, 0; 𝜃1) =
6, 𝑢𝑂𝐵 (1, 0; 𝜃1) = 𝑢𝐶𝐵 (1, 1; 𝜃1) = 6, 𝑢𝑂𝐴(0, 1; 𝜃1) = 6.2 > 𝑢𝐶𝐴(1, 1; 𝜃1) = 6, 
𝑢𝑂𝐵 (0, 0; 𝜃1) = 6 > 𝑢𝐶𝐵 (0, 1; 𝜃1) = 5.995. The four possible coalition 
structures form a deviation cycle (0, 0) → (1, 0) → (1, 1) → (0, 1) → (0, 0); 
hence, no coalition structure is stable relative to 𝜃1. Additionally, even 
when 𝛺(𝜃) is not empty, it may contain multiple coalition structures. 
Given a tax plan, the non-existence and non-uniqueness of stable coali-
tion structures make it difficult to anticipate which coalition will be 
formed.

To avoid this problem, consider a special type of tax plans relative 
to each of which a unique stable coalition structure exists. Given 𝜔 =
(𝑚𝐴, 𝑚𝐵), a tax plan 𝜃 is called an essential plan at 𝜔, if

𝑢𝐶𝐴(𝑠𝐴 + 1, 𝑠𝐵 ; 𝜃) ≥ 𝑢𝑂𝐴(𝑠𝐴, 𝑠𝐵 ; 𝜃), when 𝑠𝐴 < 𝑚𝐴; (19)

𝑢𝐶𝐵 (𝑠𝐴, 𝑠𝐵 + 1; 𝜃) ≥ 𝑢𝑂𝐵 (𝑠𝐴, 𝑠𝐵 ; 𝜃), when 𝑠𝐵 < 𝑚𝐵 ; (20)

𝑢𝑂𝐴(𝑠𝐴 − 1, 𝑠𝐵 ; 𝜃) > 𝑢𝐶𝐴(𝑠𝐴, 𝑠𝐵 ; 𝜃), when 𝑠𝐴 > 𝑚𝐴; (21)

𝑢𝑂𝐵 (𝑠𝐴, 𝑠𝐵 − 1; 𝜃) > 𝑢𝐶𝐵 (𝑠𝐴, 𝑠𝐵 ; 𝜃), when 𝑠𝐵 > 𝑚𝐵 . (22)

Let 𝛩(𝜔) denote the set of all essential plans at 𝜔.
If 𝜃 ∈ 𝛩(𝜔), then any other coalition structure (𝑠𝐴, 𝑠𝐵) ≠ 𝜔 cannot 

be stable relative to 𝜃. Intuitively, 𝜃 will compel (𝑠𝐴, 𝑠𝐵) to transform 
into 𝜔 = (𝑚𝐴, 𝑚𝐵). In fact, when 𝑠𝐴 < 𝑚𝐴 or 𝑠𝐵 < 𝑚𝐵 holds, (19) or 
(20) indicates the existence of a type A or type B non-signatory who is 
willing to join the coalition and become a signatory. Thus, any coalition 
structure (𝑠𝐴, 𝑠𝐵) cannot be externally stable if 𝑠𝐴 < 𝑚𝐴 or 𝑠𝐵 < 𝑚𝐵 . 
Similarly, (21) and (22) show that (𝑠𝐴, 𝑠𝐵) cannot be internally stable 
if 𝑠𝐴 > 𝑚𝐴 or 𝑠𝐵 > 𝑚𝐵 .

Furthermore, we have:

Lemma 2.  For any 𝜃 ∈ 𝛩(𝜔), 𝛺(𝜃) = {𝜔}.
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Proof.  We have already established that 𝜔′ ∉ 𝛺(𝜃) for all 𝜔′ ≠ 𝜔. It 
remains to prove that 𝜔 ∈ 𝛺(𝜃). If we let (𝑠𝐴, 𝑠𝐵) = (𝑚𝐴 − 1, 𝑚𝐵) in (19) 
and let (𝑠𝐴, 𝑠𝐵) = (𝑚𝐴, 𝑚𝐵 −1) in (20), then (𝑚𝐴, 𝑚𝐵) is internally stable 
relative to 𝜃. Likewise, by letting (𝑠𝐴, 𝑠𝐵) = (𝑚𝐴 + 1, 𝑚𝐵) in (21) and 
(𝑠𝐴, 𝑠𝐵) = (𝑚𝐴, 𝑚𝐵 + 1) in (22), we see that (𝑚𝐴, 𝑚𝐵) is externally stable 
relative to 𝜃. Therefore, 𝜔 ∈ 𝛺(𝜃). □

Lemma  2 establishes the existence and uniqueness of a stable coali-
tion structure for any essential plan. Therefore, it is convenient to 
assume that the regulator will only choose an essential plan in stage 
one of the game so that the coalition structure results in the next 
stage can be uniquely determined. Our next lemma suggests that this is 
not a restrictive assumption, because the regulator can always find an 
essential plan at any coalition structure 𝜔. 

Lemma 3.  For any 𝜔 ∈ 𝛺, 𝛩(𝜔) ≠ ∅.

Proof.  Given any 𝜔 = (𝑚𝐴, 𝑚𝐵), we construct a tax plan 𝜃 as follows. 
Let 𝜃𝐶𝑘 (𝑚𝐴, 𝑚𝐵) be a tax rate such that 𝑢𝐶𝑘 (𝑚𝐴, 𝑚𝐵 ; 𝜃) is maximized, 
𝑘 = 𝐴,𝐵. Denote 𝜃(𝑚𝐴, 𝑚𝐵) = argmin𝑘∈{𝐴,𝐵} 𝑢𝐶𝑘 (𝑚𝐴, 𝑚𝐵 ; 𝜃). Fix this 
𝜃(𝑚𝐴, 𝑚𝐵), then 𝑢𝐶𝑘 (𝑚𝐴, 𝑚𝐵 ; 𝜃) and 𝑢𝑂𝑘 (𝑚𝐴, 𝑚𝐵 ; 𝜃) are also given. Define 
𝜃(𝑚𝐴 + 1, 𝑚𝐵) and 𝜃(𝑚𝐴, 𝑚𝐵 + 1) such that 𝑢𝐶𝐴(𝑚𝐴 + 1, 𝑚𝐵 ; 𝜃) is slightly 
smaller than 𝑢𝑂𝐴(𝑚𝐴, 𝑚𝐵 ; 𝜃), and 𝑢𝐶𝐵 (𝑚𝐴, 𝑚𝐵+1; 𝜃) is slightly smaller than 
𝑢𝑂𝐵 (𝑚𝐴, 𝑚𝐵 ; 𝜃). Then, define 𝜃(𝑚𝐴+1, 𝑚𝐵 +1) such that both 𝑢𝑂𝐴(𝑚𝐴, 𝑚𝐵 +
1) > 𝑢𝐶𝐴(𝑚𝐴 + 1, 𝑚𝐵 + 1) and 𝑢𝑂𝐵 (𝑚𝐴 + 1, 𝑚𝐵) > 𝑢𝐶𝐵 (𝑚𝐴 + 1, 𝑚𝐵 + 1)
hold. Inductively, suppose we have already defined 𝜃(𝑠𝐴 + 1, 𝑠𝐵) and 
𝜃(𝑠𝐴, 𝑠𝐵 + 1) where 𝑠𝐴 ≥ 𝑚𝐴 and 𝑠𝐵 ≥ 𝑚𝐵 , then define 𝜃(𝑠𝐴 + 1, 𝑠𝐵 + 1)
to ensure 𝑢𝑂𝐴(𝑠𝐴, 𝑠𝐵 + 1) > 𝑢𝐶𝐴(𝑠𝐴 + 1, 𝑠𝐵 + 1) and 𝑢𝑂𝐵 (𝑠𝐴 + 1, 𝑠𝐵) >
𝑢𝐶𝐵 (𝑠𝐴 + 1, 𝑠𝐵 + 1).

In this manner, we can define 𝜃(𝑠𝐴, 𝑠𝐵) for all 𝑠𝐴 ≥ 𝑚𝐴 and 𝑠𝐵 ≥ 𝑚𝐵 , 
satisfying (19)–(22). Other parts of 𝜃(𝑠𝐴, 𝑠𝐵) where 𝑠𝐴 < 𝑚𝐴 or 𝑠𝐵 < 𝑚𝐵
can be similarly defined in an inductive way. Thus, we have constructed 
an essential plan 𝜃 ∈ 𝛩(𝜔). □

Let 𝛩 = ∪𝜔∈𝛺𝛩(𝜔) be the set of essential plans. Given any 𝜃 ∈ 𝛩, let 
𝜔(𝜃) denote the corresponding stable coalition structure. Furthermore, 
let 𝛩0

= {𝜃 ∈ 𝛩 ∶ 𝜔(𝜃) ≠ (0, 0)} denote the set of essential plans that 
leads to nonempty coalitions. From Lemma  3, both 𝛩 and 𝛩0 are not 
empty.

3.3. Stage one

If an essential plan 𝜃 ∈ 𝛩 is chosen in stage one, then a coalition 
with structure 𝜔(𝜃) will be formed in stage two, and the expected social 
welfare from the perspective of the regulator is7

𝑣(𝜃) = 𝑉 (𝜔(𝜃); 𝜃). (23)

Similarly, if 𝜃 ∈ 𝛩
0 is chosen in stage one, then the expected average 

coalition payoff is8

𝑦(𝜃) = 𝑌 (𝜔(𝜃); 𝜃). (24)

The objective of the regulator in stage one is to maximize either 
𝑣(𝜃) or 𝑦(𝜃) by selecting an appropriate essential plan. The choice of 
objective function hinges on the regulator’s identity. If the regulator’s 
goal is to enhance the overall well-being of humanity, the social welfare 
𝑣(𝜃) is the appropriate objective function. Conversely, if the regulator 
represents the coalition and prioritizes the interests of its members, 
average coalition payoff 𝑦(𝜃) should be the objective function.

7 For the completeness of the definition, if 𝜃 ∉ 𝛩 and 𝛺(𝜃) ≠ ∅, we define 
𝑣(𝜃) = min(𝑚𝐴 ,𝑚𝐵 )∈𝛺(𝜃) 𝑉 (𝑚𝐴, 𝑚𝐵 ; 𝜃). That is, we assume that the smallest value 
of social welfare will be realized if 𝜃 is not essential and there are multiple 
stable coalition structures relative to 𝜃.

8 If 𝜃 ∉ 𝛩 and there are multiple stable coalition structures (𝑚𝐴, 𝑚𝐵) ≠ (0, 0)
relative to 𝜃, we define 𝑦(𝜃) = min 𝑌 (𝑚 ,𝑚 ; 𝜃).
(𝑚𝐴 ,𝑚𝐵 )∈𝛺(𝜃)∖(0,0) 𝐴 𝐵
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If 𝜃∗ ∈ 𝛩 exists such that 𝑣(𝜃∗) ≥ 𝑣(𝜃′) for all 𝜃′ ∈ 𝛩, then 𝜃∗ is 
called an efficient plan; if 𝜃∗∗ ∈ 𝛩

0 exists such that 𝑦(𝜃∗∗) ≥ 𝑦(𝜃′) for all 
𝜃′ ∈ 𝛩

0
, then we call 𝜃∗∗ an optimal plan.

To derive efficient/optimal plans, it is convenient to introduce the 
concepts of locally efficient/optimal plans first. Given 𝜔 ∈ 𝛺, a tax 
plan 𝜃 ∈ 𝛩(𝜔) is considered locally efficient at 𝜔, if it maximizes the 
social welfare within 𝛩(𝜔), that is, 𝑉 (𝜔; 𝜃) ≥ 𝑉 (𝜔; 𝜃′) for all 𝜃′ ∈ 𝛩(𝜔). 
Likewise, a tax plan 𝜃 ∈ 𝛩

0
(𝜔) is said to be locally optimal at 𝜔, if 

𝑌 (𝜔; 𝜃) ≥ 𝑌 (𝜔; 𝜃′) for all 𝜃′ ∈ 𝛩
0
(𝜔).

3.4. Discussion

To conclude this section, we examine a critical implicit assumption 
in the model: the tax plan (coalition rule) is designed by the organizer 
in stage one and remains fixed thereafter, especially after coalition 
formation in stage two. Below, we present arguments in support of this 
assumption.

First, international environmental agreements are fundamentally 
self-enforcing, meaning countries perpetually retain the right to re-
assess their participation decisions. If we allow the regulator to adjust 
the coalition rule after coalition formation, we must likewise permit 
countries to reconsider their participation in response to such changes. 
As a result, altering the original coalition rule to different rules could 
prompt some coalition members to withdraw, ultimately reducing the 
regulator’s objective value rather than enhancing it. This occurs be-
cause the rule change alters the relative payoff structure between 
being a member versus a non-member. Specifically, the advantage of 
remaining in the coalition compared to leaving diminishes, disrupt-
ing the equilibrium that previously maintained stability and making 
participation less attractive for some members.9

Second, some readers may wonder our tax plan involves incredible 
threats, because the out-of-equilibrium tax rates serve as punishments 
to support the equilibrium outcome. In practice, an off-equilibrium 
outcome may result from a signatory deviating from the coalition due 
to some perturbation (e.g., a less rational president is elected in a 
country). In that case, the regulator would eliminate the possibility 
of its future re-entry by altering the coalition rule to make rejoining 
unprofitable for that country. Conversely, maintaining the original tax 
plan preserves incentives for the country to rejoin in the future. For 
example, while a president’s assumption of office might cause a country 
to exit the coalition, the next president could reverse this decision, 
provided the coalition rule remains unchanged and continues to offer 
participation incentives. Therefore, although adherence to the original 
tax plan may temporarily decrease the organizer’s objective value due 
to external disturbances,10 it can, in the long term, achieve a higher 
objective value by creating stronger participation incentives. In this 
sense, the punishments implicit in our tax plans are indeed credible.

Finally, our approach aligns with established literature in this field. 
Several existing studies, including (Carraro et al., 2009), Köke and 
Lange (2017), Mao (2020), and Masoudi (2022), adopt similar assump-
tions that contract terms remain unchanged after coalition formation, 
even when potentially more favorable cooperation prospects might ex-
ist. This methodological commitment reflects the practical constraints 
of international agreements where sovereign participants must retain 
certainty about the terms to which they have committed, regardless 
of hypothetical improvements that could theoretically be achieved 
through subsequent modifications.

9 Mao (2018) presents an example where, after a coalition is formed, 
changing the original coalition rule to the MTP rule (which aims to maximize 
the total coalition payoff) leads to some members leaving the coalition. 
Consequently, this results in a smaller total coalition payoff.
10 The design of the coalition rule in practice should take the impact of such 
disturbances into account. See Mao (2020) for a detailed discussion.
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4. Efficient plan and optimal plan

The following theorem establishes the existence of efficient plans 
and optimal plans.

Theorem 1.  There exists an efficient plan and an optimal plan for any 
𝐺
(

𝑛𝐴, 𝑛𝐵 , 𝜆𝐴, 𝜆𝐵
)

.

Proof.  Given (𝑚𝐴, 𝑚𝐵), 𝑉 (𝑚𝐴, 𝑚𝐵 ; 𝜃) is a continuous function of 𝜃 on the 
set {𝜃 ∶ (19) and (20) hold}, which is evidently a nonempty closed set. 
From the forms of 𝐵𝑖(𝑋) and 𝐶(𝑥𝑖), the maximal value of 𝑉 (𝑚𝐴, 𝑚𝐵 ; 𝜃), 
if exists, must be reached as 𝜃(𝑚𝐴, 𝑚𝐵) is not larger than a bounded 
value. Since a continuous function that is defined on a bounded closed 
set has a maximum value, we can find a tax plan, 𝜃∗𝑚𝐴 ,𝑚𝐵

, such that some 
parts of 𝜃∗𝑚𝐴 ,𝑚𝐵

 maximizes 𝑉 (𝑚𝐴, 𝑚𝐵 ; 𝜃) under the constraints (19) and 
(20), while other parts of 𝜃∗𝑚𝐴 ,𝑚𝐵

 is constructed to ensure that (21) and 
(22) hold. Thus, we can construct a locally efficient plan 𝜃∗𝑚𝐴 ,𝑚𝐵

 at each 
coalition structure (𝑚𝐴, 𝑚𝐵).

By comparing these locally efficient plans at different (𝑚𝐴, 𝑚𝐵), we 
can find among them a tax plan 𝜃∗ such that 𝑣(𝜃) is maximized. It 
remains to be proven that 𝜃∗ is efficient. Suppose by contradiction 
that 𝜃′ ∈ 𝛩 exists such that 𝑣(𝜃∗) < 𝑣(𝜃′). If 𝜃′ ∈ 𝛩(𝑚′

𝐴, 𝑚
′
𝐵), then 

𝑣(𝜃′) ≤ 𝑣(𝜃∗
𝑚′
𝐴 ,𝑚

′
𝐵
) ≤ 𝑣(𝜃∗), which contradicts 𝑣(𝜃∗) < 𝑣(𝜃′). Hence, 𝜃∗

is an efficient plan.
Similarly, we can prove the existence of an optimal plan by first 

constructing locally optimal plans 𝜃∗∗𝑚𝐴 ,𝑚𝐵
 at all (𝑚𝐴, 𝑚𝐵) ≠ (0, 0), and 

then among them identify the optimal plan as the one that maximizes 
𝑦(𝜃). □

Inspired by the proof of Theorem  1, a two-step algorithm for finding 
an efficient or optimal plan is as follows. Step 1: construct locally 
efficient or locally optimal plans at all coalition structures. Step 2: 
among these tax plans, find the one that maximizes the objective payoff 
𝑣(𝜃) or 𝑦(𝜃).

To illustrate this algorithm, consider a numerical example
𝐺(3, 2, 𝜆𝐴, 𝜆𝐵) where 𝜆̄ = 2. First, let 𝜆𝐴 = 2.2, 𝜆𝐵 = 1.7. At (𝑚𝐴, 𝑚𝐵) =
(2, 1), we can construct a locally efficient plan 𝜃∗2,1 by solving the 
maximization problem max𝜃 𝑉 (2, 1; 𝜃), or a locally optimal plan 𝜃∗∗2,1 by 
solving max𝜃 𝑌 (2, 1; 𝜃), both subject to the following constraints derived 
from (19)–(22): 
𝑢𝑂𝐴(0, 0; 𝜃) ≤ 𝑢𝐶𝐴(1, 0; 𝜃), 𝑢

𝑂
𝐴(1, 0; 𝜃) ≤ 𝑢𝐶𝐴(2, 0; 𝜃),

𝑢𝑂𝐴(0, 1; 𝜃) ≤ 𝑢𝐶𝐴(1, 1; 𝜃), 𝑢
𝑂
𝐴(1, 1; 𝜃) ≤ 𝑢𝐶𝐴(2, 1; 𝜃),

𝑢𝑂𝐴(0, 2; 𝜃) ≤ 𝑢𝐶𝐴(1, 2; 𝜃), 𝑢
𝑂
𝐴(1, 2; 𝜃) ≤ 𝑢𝐶𝐴(2, 2; 𝜃);

(25)

𝑢𝑂𝐵 (0, 0; 𝜃) ≤ 𝑢𝐶𝐵 (0, 1; 𝜃), 𝑢
𝑂
𝐵 (1, 0; 𝜃) ≤ 𝑢𝐶𝐵 (1, 1; 𝜃),

𝑢𝑂𝐵 (2, 0; 𝜃) ≤ 𝑢𝐶𝐵 (2, 1; 𝜃), 𝑢
𝑂
𝐵 (3, 0; 𝜃) ≤ 𝑢𝐶𝐵 (3, 1; 𝜃);

(26)

𝑢𝑂𝐴(2, 0; 𝜃) > 𝑢𝐶𝐴(3, 0; 𝜃), 𝑢
𝑂
𝐴(2, 1; 𝜃) > 𝑢𝐶𝐴(3, 1; 𝜃),

𝑢𝑂𝐴(2, 2; 𝜃) > 𝑢𝐶𝐴(3, 2; 𝜃);
(27)

𝑢𝑂𝐵 (0, 1; 𝜃) > 𝑢𝐶𝐵 (0, 2; 𝜃), 𝑢
𝑂
𝐵 (1, 1; 𝜃) > 𝑢𝐶𝐵 (1, 2; 𝜃),

𝑢𝑂𝐵 (2, 1; 𝜃) > 𝑢𝐶𝐵 (2, 2; 𝜃), 𝑢
𝑂
𝐵 (3, 1; 𝜃) > 𝑢𝐶𝐵 (3, 2; 𝜃).

(28)

We list a pair of solutions to these two problems in Table  2.11 The 
corresponding objective payoffs are 𝑣(𝜃∗2,1) = 36.60 and 𝑦(𝜃∗∗2,1) = 26.51, 
respectively.

In this manner, we can derive the values of 𝑣(𝜃∗𝑚𝐴 ,𝑚𝐵
) for all locally 

efficient plans 𝜃∗𝑚𝐴 ,𝑚𝐵
, and the values of 𝑦(𝜃∗∗𝑚𝐴 ,𝑚𝐵

) for all locally optimal 
plans 𝜃∗∗𝑚𝐴 ,𝑚𝐵

 (see column 1 of Table  3). Since 𝑣(𝜃∗3,2) = 49.97 > 𝑣(𝜃∗𝑚𝐴 ,𝑚𝐵
)

and 𝑦(𝜃∗∗3,2) = 49.97 > 𝑦(𝜃∗∗𝑚𝐴 ,𝑚𝐵
) for all (𝑚𝐴, 𝑚𝐵) ≠ (3, 2), 𝜃∗3,2 is efficient 

and 𝜃∗∗3,2 is optimal. Thus, for 𝐺(3, 2, 2.2, 1.7), 𝜔(𝜃∗) = 𝜔(𝜃∗∗) = (3, 2).
Similarly, column 2 and 3 of Table  3 show that for 𝐺(3, 2, 3.06, 0.41), 

𝜔(𝜃∗) = (3, 2), 𝜔(𝜃∗∗) = (3, 0), and for 𝐺(3, 2, 3.23, 0.16), 𝜔(𝜃∗) = 𝜔(𝜃∗∗) =
(3, 0). Given 𝜆̄, the coalition formed under efficient/optimal plans de-
pends on 𝜆𝐴∕𝜆𝐵 . Specifically, the coalition formed under 𝜃∗ may be 
larger than that under 𝜃∗∗. We will explain this result in Section 6.

11 All numerical simulations in this paper were conducted using Wolfram 
Mathematica. Interested readers may request the codes via correspondence.
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Table 2
Locally efficient/optimal plans at (2, 1) for 𝐺(3, 2, 2.2, 1.7).
 (𝑚𝐴 , 𝑚𝐵 ) (0,1) (0,2) (1,0) (1,1) (1,2) (2,0) (2,1) (2,2) (3,0) (3,1) (3,2) 
 𝜃∗2,1(⋅) 0 0 0 1.48 0.56 0 6.80 8.29 0 5.25 5.97  
 𝜃∗∗2,1(⋅) 0 0 0 1.20 1.45 1.59 4.07 6.39 1.95 5.54 6.86  
Table 3
Looking for efficient/optimal plans for 𝐺(3, 2, 𝜆𝐴, 𝜆𝐵), 𝜆̄ = 2.
 (𝑚𝐴 , 𝑚𝐵 ) 𝜆𝐴 = 2.2, 𝜆𝐵 = 1.7 𝜆𝐴 = 3.06, 𝜆𝐵 = 0.41 𝜆𝐴 = 3.23, 𝜆𝐵 = 0.16

 𝑣(𝜃∗𝑚𝐴 ,𝑚𝐵
) 𝑦(𝜃∗∗𝑚𝐴 ,𝑚𝐵

) 𝑣(𝜃∗𝑚𝐴 ,𝑚𝐵
) 𝑦(𝜃∗∗𝑚𝐴 ,𝑚𝐵

) 𝑣(𝜃∗𝑚𝐴 ,𝑚𝐵
) 𝑦(𝜃∗∗𝑚𝐴 ,𝑚𝐵

)  
 (0,0) 17.97 – 17.16 – 16.87 –  
 (1,0) 17.97 19.58 17.16 25.90 16.87 27.06  
 (2,0) 27.83 22 26.66 30.58 26.03 32.26  
 (3,0) 36.22 29.26 31.62 44.60 30.64 47.87  
 (0,1) 19.10 15.29 17.16 4.05 16.88 1.60  
 (1,1) 26.61 19.47 19.76 16.07 17.92 14.82  
 (2,1) 36.60 26.51 24.10 24.45 19.77 21.21  
 (3,1) 43.09 37.95 29.78 35.19 22.34 27.36  
 (0,2) 26.95 17 20.19 4.13 18.12 1.61  
 (1,2) 37.28 23.87 24.97 14.25 20.16 11.40  
 (2,2) 43.89 34.68 31.09 24.81 22.93 18.78  
 (3,2) 49.97 49.97 38.14 38.14 26.36 26.36  
The bold numbers in this table are the corresponding payoffs under efficient/optimal plans.
Table 4
Comparing 𝜃∗, 𝜃∗∗ to 𝜃𝑎, 𝜃𝑏 in 𝐺(3, 2, 2, 2).
 (𝑚𝐴 , 𝑚𝐵 ) 𝜃∗ = 𝜃∗∗ 𝜃𝑎 𝜃𝑏

 𝜃(⋅) 𝑢𝐶𝑘 (⋅; 𝜃) 𝑢𝑂𝑘 (⋅; 𝜃) 𝜃(⋅) 𝑢𝐶𝑘 (⋅; 𝜃) 𝑢𝑂𝑘 (⋅; 𝜃) 𝜃(⋅) 𝑢𝐶𝑘 (⋅; 𝜃) 𝑢𝑂𝑘 (⋅; 𝜃)  
 (0, 0) – – 18 – – 34 – – 18  
 (1, 0) 0 18 18 8 −14 34 0 18 18  
 (2, 0) 0.58 18.37 18.78 8 2 50 2 20 26  
 (3, 0) 1.56 19.92 21.00 8 18 66 4 26 42  
 (0, 1) 0 18 18 8 −14 34 0 18 18  
 (1, 1) 0.58 18.37 18.78 8 2 50 2 20 26  
 (2, 1) 1.56 19.92 21.00 8 18 66 4 26 42  
 (3, 1) 3.23 33.17 46.96 8 34 82 6 36 66  
 (0, 2) 0.58 18.37 18.78 8 2 50 2 20 26  
 (1, 2) 1.56 19.92 21.00 8 18 66 4 26 42  
 (2, 2) 3.23 33.17 46.96 8 34 82 6 36 66  
 (3, 2) 8 50 – 8 50 – 8 50 –  
 𝛺(𝜃) {(3,2)} {(0,0)} {(3,0), (2,1), (1,2)}
 𝑣(𝜃) 50 18 23.6
 𝑦(𝜃) 50 – 20
Now, we compare efficient plan 𝜃∗ and optimal plan 𝜃∗∗ with 
some other tax plans. Define 𝜃𝑎 to be the tax plan that maximizes 
𝑉 (𝑚𝐴, 𝑚𝐵 ; 𝜃) for all (𝑚𝐴, 𝑚𝐵), and define 𝜃𝑏 as the tax plan that maxi-
mizes 𝑌 (𝑚𝐴, 𝑚𝐵 ; 𝜃) for all (𝑚𝐴, 𝑚𝐵) ≠ (0, 0). The key difference between 
𝜃∗ and 𝜃𝑎 is that the latter concerns the values of social welfare under 
all coalitions, whether stable or not, while the former only concerns 
those under a stable coalition. The difference between 𝜃∗∗ and 𝜃𝑏 is 
similar. Note that 𝜃𝑏 can also be defined as maximizing the joint payoff 
of the coalition for all coalitions formed, as assumed by many existing 
studies.12

To compare the difference between these tax plans, we consider 
an example with symmetric countries 𝐺(3, 2, 2, 2) and list the corre-
sponding outcomes in Table  4. From this table, we can see that no 
country will join the coalition under 𝜃𝑎, while three countries will 
join the coalition under 𝜃𝑏.13 In contrast, all countries choose to join 
the coalition under 𝜃∗ and 𝜃∗∗ (in this example, 𝜃∗ = 𝜃∗∗), leading 
to a larger value of objective payoff than those under 𝜃𝑎 and 𝜃𝑏. 
An advantage of 𝜃∗ over 𝜃𝑎 (or 𝜃∗∗ over 𝜃𝑏) is that it abandons the 
unnecessary constraints on non-stable coalitions, and thus can be more 
flexibly designed to attract more countries to join the coalition.

12 For example, Barrett (1994).
13 Note that 𝜃𝑏 is not an essential plan, since 𝛺(𝜃𝑏) = {(3, 0), (2, 1), (1, 2)}. We 
can define 𝑣(𝜃𝑏) and 𝑦(𝜃𝑏) according to footnote .
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5. Properties under small heterogeneity

In this section, we explore the properties of efficient and optimal 
plans and the corresponding objective payoffs when the degree of 
heterogeneity is small, that is, when 𝜆𝐴 and 𝜆𝐵 are sufficiently close 
to each other.

The following proposition shows when 𝜆𝐴 −𝜆𝐵 is sufficiently small, 
efficient and optimal plans lead to full cooperation (all countries join 
the coalition), and 𝑣(𝜃∗) and 𝑦(𝜃∗∗) decrease with the degree of hetero-
geneity but increase with the level of average benefit.

Proposition 1.  Suppose that 𝜃∗ is efficient, and 𝜃∗∗ is optimal, then 𝜎 > 0
exists, such that when 𝜆𝐴 − 𝜆𝐵 < 𝜎:

(a) 𝜔(𝜃∗) = 𝜔(𝜃∗∗) = (𝑛𝐴, 𝑛𝐵);
(b) 𝑣(𝜃∗) = 𝑦(𝜃∗∗);
(c) 𝑣(𝜃∗) and 𝑦(𝜃∗∗) decrease with 𝜆𝐴 − 𝜆𝐵 ;
(d) 𝑣(𝜃∗) and 𝑦(𝜃∗∗) increase with 𝜆̄.

Proof. (a) When 𝜆𝐴 − 𝜆𝐵 is sufficiently small,

𝑉 (𝑚𝐴, 𝑚𝐵 ; 𝜃) ≈
𝑚𝐴 + 𝑚𝐵

𝑛
𝑢𝐶𝐴(𝑚𝐴, 𝑚𝐵 ; 𝜃) +

𝑛 − 𝑚𝐴 − 𝑚𝐵
𝑛

𝑢𝑂𝐴(𝑚𝐴, 𝑚𝐵 ; 𝜃),

which, from (11) and (12), is a quadratic function of 𝜃. Driving the 
maximum value of this function, we obtain 𝑣(𝜃∗𝑚𝐴 ,𝑚𝐵

) ≈ 𝜆̄2

2𝑛 [(𝑚𝐴 +
𝑚 )(𝑛 − 1)2 + 2𝑛2 − 𝑛], where 𝜃∗  is locally efficient at (𝑚 ,𝑚 ). 
𝐵 𝑚𝐴 ,𝑚𝐵 𝐴 𝐵
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Because 𝑣(𝜃∗𝑚𝐴 ,𝑚𝐵
) increases with 𝑚𝐴 and 𝑚𝐵 , 𝜃∗ = 𝜃∗𝑛𝐴 ,𝑛𝐵  is efficient, 

and 𝜔(𝜃∗) = (𝑛𝐴, 𝑛𝐵).
Similarly, we can prove that when 𝜆𝐴−𝜆𝐵 is very small, 𝑦(𝜃∗∗𝑚𝐴 ,𝑚𝐵

) ≈
1
2 𝜆̄

2(𝑚𝐴+𝑚𝐵−1)2+(𝑛−
1
2 )𝜆̄

2, where 𝜃∗∗𝑚𝐴 ,𝑚𝐵
 is locally optimal at (𝑚𝐴, 𝑚𝐵). 

Because 𝑦(𝜃∗∗𝑚𝐴 ,𝑚𝐵
) increases with 𝑚𝐴 and 𝑚𝐵 , 𝜃∗∗ = 𝜃∗∗𝑛𝐴 ,𝑛𝐵  is optimal, 

and 𝜔(𝜃∗∗) = (𝑛𝐴, 𝑛𝐵).
(b): From (a), when 𝜆𝐴−𝜆𝐵 is small enough, 𝑣(𝜃∗) = 𝑛𝐴

𝑛 𝑢𝐶𝐴(𝑛𝐴, 𝑛𝐵 ; 𝜃
∗)+

𝑛𝐵
𝑛 𝑢𝐶𝐵 (𝑛𝐴, 𝑛𝐵 ; 𝜃

∗). From (8), (10), and (11), we have 𝑣(𝜃∗) = (2𝜆2𝐴𝑛
3
𝐴𝑛𝐵 +

2𝜆𝐴𝑛3𝐴𝜆𝐵𝑛𝐵 + 𝜆2𝐴𝑛
2
𝐴𝑛

2
𝐵 + 𝑛2𝐴𝜆

2
𝐵𝑛

2
𝐵 + 4𝜆𝐴𝑛2𝐴𝜆𝐵𝑛

2
𝐵 − 𝜆2𝐴𝑛𝐴𝑛𝐵 + 2𝑛𝐴𝜆2𝐵𝑛

3
𝐵 −

𝑛𝐴𝜆2𝐵𝑛𝐵 + 2𝜆𝐴𝑛𝐴𝜆𝐵𝑛3𝐵 + 2𝜆𝐴𝑛𝐴𝜆𝐵𝑛𝐵 + 𝜆2𝐴𝑛
4
𝐴 + 𝜆2𝐵𝑛

4
𝐵)∕2𝑛

2 = 𝑛2𝜆̄2∕2 −
𝑛𝐴𝑛𝐵(𝜆𝐴 − 𝜆𝐵)2∕2𝑛2. Similarly, 𝑦(𝜃∗∗) = 𝑛2𝜆̄2∕2 − 𝑛𝐴𝑛𝐵(𝜆𝐴 − 𝜆𝐵)2∕2𝑛2 =
𝑣(𝜃∗).

(c)(d): From (b), 𝑣(𝜃∗) = 𝑦(𝜃∗∗) = 𝑛2𝜆̄2∕2 − 𝑛𝐴𝑛𝐵(𝜆𝐴 − 𝜆𝐵)2∕2𝑛2. 
Therefore, 𝑣(𝜃∗) and 𝑦(𝜃∗∗) decrease with 𝜆𝐴 − 𝜆𝐵 , and increase with 
𝜆̄. □

The last paragraph in Section 4 explains the reason for the full 
cooperation outcome of Proposition  1(a), which naturally leads to 
Proposition  1(b). The intuition behind Proposition  1(c) is simple. From 
(7), with a larger benefit difference 𝜆𝐴 − 𝜆𝐵 , a larger gap between the 
corresponding tax rates 𝑝𝐴 − 𝑝𝐵 will be created. Meanwhile, according 
to Lemma  1(b), socially optimal tax rates 𝑝∗𝐴 = 𝑝∗𝐵 . Therefore, a larger 
degree of heterogeneity makes coordinating the interests of different 
types of countries more difficult and obtaining a large value of 𝑣(𝜃) or 
𝑦(𝜃) less likely.

As for the value of social welfare, the socially optimal level 𝑈 (𝒑∗)
is the largest level that can ever be reached, while 𝑣(𝜃∗) is the largest 
level that can be obtained through our three-stage IEA game. We have 
𝑈 (𝒑∗) ≥ 𝑣(𝜃∗), and the equality holds if the socially optimal level can be 
implemented by an efficient plan. Thus, an important question is under 
what conditions 𝑣(𝜃∗) = 𝑈 (𝒑∗) holds. According to our next result, it 
only holds when all countries are symmetric.

Proposition 2.  If and only if 𝜆𝐴 = 𝜆𝐵 , 𝑣(𝜃∗) = 𝑈 (𝒑∗).

Proof.  Suppose 𝑣(𝜃∗) = 𝑈 (𝒑∗). Then, the socially optimal tax rate 
𝒑∗ coincides with efficient plan 𝜃∗. According to Proposition  1(a), and 
Lemma  1(b), an efficient plan 𝜃∗ exists such that 𝜃∗(𝑛𝐴, 𝑛𝐵) = 𝑛𝜆̄−𝜆𝐴 =
𝑛𝜆̄ − 𝜆𝐵 , and thus 𝜆𝐴 = 𝜆𝐵 .

Conversely, if 𝜆𝐴 = 𝜆𝐵 , then from the proof of Proposition  1(b), 
𝑣(𝜃∗) = 𝑛2𝜆̄2∕2. On the other hand, from Lemma  1(b), we have 𝑈 (𝒑∗) =
𝑛2𝜆̄2∕2. Thus, 𝑣(𝜃∗) = 𝑈 (𝒑∗). □

Further, we can use the index 𝜇 = 𝑈 (𝒑∗)−𝑣(𝜃∗)
𝑣(𝜃∗)  to characterize how 

much better the socially optimal level of social welfare is compared to 
the efficient level. The following proposition concerns the factors that 
may affect 𝜇.

Proposition 3.  There exists 𝜎 > 0, such that when 𝜆𝐴 − 𝜆𝐵 < 𝜎:
(i) Given 𝜆̄, 𝜇 increases with 𝜆𝐴 − 𝜆𝐵 ;
(ii) Given 𝜆𝐴∕𝜆𝐵 , 𝜇 is invariant to 𝜆̄.

Proof.  (i) It follows from Lemma  1(b) that 𝑈 (𝒑∗) = 𝑛2𝜆̄2∕2. From the 
proof of Proposition  1(b), we have 𝑣(𝜃∗) = 𝑛2𝜆̄2∕2−𝑛𝐴𝑛𝐵(𝜆𝐴−𝜆𝐵)2∕2𝑛2. 
Since 𝑣(𝜃∗) decreases with 𝜆𝐴−𝜆𝐵 , 𝜇 = 𝑈 (𝒑∗)−𝑣(𝜃∗)

𝑣(𝜃∗)  increases with 𝜆𝐴−𝜆𝐵 .
(ii) Again, use 𝑈 (𝒑∗) = 𝑛2𝜆̄2∕2, 𝑣(𝜃∗) = 𝑛2𝜆̄2∕2− 𝑛𝐴𝑛𝐵(𝜆𝐴 −𝜆𝐵)2∕2𝑛2. 

For simplicity, we write 𝜆𝐴𝐵 = 𝜆𝐴∕𝜆𝐵 . Then, 𝜆𝐴 = 𝜆𝐴𝐵
𝑛𝜆̄

𝑛𝐴𝜆𝐴𝐵+𝑛𝐵
, 

𝜆𝐵 = 𝑛𝜆̄
𝑛𝐴𝜆𝐴𝐵+𝑛𝐵

, and 𝜆𝐴 − 𝜆𝐵 = 𝑛𝜆̄(𝜆𝐴𝐵−1)
𝑛𝐴𝜆𝐴𝐵+𝑛𝐵

. For fixed 𝜆𝐴𝐵 , 𝜇 = 𝑈 (𝒑∗)−𝑣(𝜃∗)
𝑣(𝜃∗)

is independent of 𝜆̄. □

Part (i) of Proposition  3 shows that if 𝜆̄ is fixed, 𝜇 increases with 
the degree of heterogeneity. To reiterate, this result holds because 
larger heterogeneity results in more difficulty in reconciling different 
countries. Provided that 𝜆𝐴∕𝜆𝐵 is fixed, part (ii) of this proposition 
shows that average benefit 𝜆̄ has the same impact on 𝑣(𝜃∗) and 𝑈 (𝒑∗), 
and hence does not affect 𝜇.
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The results in this section are distinct from the existing literature 
in two respects. On the one hand, McEvoy and McGinty (2018) found 
that only a small fraction of countries will choose to join the coalition 
under a tax system that applies a uniform tax rate to all signatories to 
maximize the coalition payoff. However, we show that by introducing 
a tax system that maximizes the corresponding payoff only under 
a stable coalition, full cooperation can result when heterogeneity is 
small enough. By removing unnecessary requirements on non-stable 
coalitions, our tax plan has more flexibility in attracting more countries 
to participate in the coalition. On the other hand, contrary to Weitzman 
(2014), we find that it is impossible to achieve the socially optimal 
outcome through our tax system when countries are asymmetric.

Note that Weitzman (2014) and McEvoy and McGinty (2018) as-
sume more general benefit function 𝐵𝑖(𝑋) = 𝜆𝑖𝑋 − 𝛽

2𝑋
2 and cost 

function 𝐶𝑖(𝑥𝑖) = 𝑐𝑖𝑥𝑖 +
𝛾
2𝑥𝑖

2 than our functions 𝐵𝑖(𝑋) = 𝜆𝑖𝑋 and 
𝐶𝑖(𝑥𝑖) = 1

2𝑥𝑖
2. Whether our results hold under a more general model 

setup remains a question. Nevertheless, at least in a special setting 
(𝛽 = 0, 𝑐𝑖 = 0, 𝛾 = 1), our findings contrast with the conclusions of these 
studies. On all accounts, this distinction between results in different 
models is worthy of more discussion on the respective application 
conditions of these models.

6. Simulations

It is difficult to solve the model analytically when the degree of 
heterogeneity is relatively large. Instead, using the algorithm stated in 
Section 4, we may study the performance of efficient and optimal plans 
through simulations. An important question is whether the results in 
Propositions  1 and 3 still hold for a large degree of heterogeneity.

First, we examine the impact of the degree of heterogeneity (mea-
sured by 𝜆𝐴 − 𝜆𝐵 or 𝜆𝐴

𝜆𝐵
) on 𝑣(𝜃∗) and 𝑦(𝜃∗∗). Consider example

𝐺
(

3, 2, 𝜆𝐴, 𝜆𝐵
) where 𝜆̄ is fixed at 2, 4, or 8. In Fig.  1, we show that 

for all 𝜆̄, 𝑣(𝜃∗) = 𝑣(𝜃∗3,2) and 𝑦(𝜃∗∗) = 𝑦(𝜃∗∗3,2) when heterogeneity is small 
enough. This confirms the full cooperation result in Proposition  1(a). 
However, if heterogeneity is relatively large, then 𝑣(𝜃∗) > 𝑣(𝜃∗𝑛𝐴 ,𝑛𝐵 ), 
𝑦(𝜃∗∗) > 𝑦(𝜃∗∗𝑛𝐴 ,𝑛𝐵 ), implying that a coalition smaller than the grand 
coalition will be formed under 𝜃∗ or 𝜃∗∗. Additionally, Fig.  1 also 
confirms the monotonicity in Proposition  1(c) and shows that it may 
no longer hold for 𝜃∗∗ when heterogeneity is sufficiently large.

Next, we investigate the impact of the average marginal benefit 𝜆̄ on 
𝑣(𝜃∗) and 𝑦(𝜃∗∗). Fig.  2 illustrates the simulation outcomes of example 
𝐺
(

3, 2, 𝜆𝐴, 𝜆𝐵
) where 𝜆𝐴∕𝜆𝐵 is fixed at 2, 4, 6 or 8. This figure shows 

that for any given 𝜆𝐴∕𝜆𝐵 , both 𝑣(𝜃∗) and 𝑦(𝜃∗∗) are increasing with 
𝜆̄. Thus, Proposition  1(d) can be extended to more general degrees of 
heterogeneity.

The examples in Figs.  1 and 2 also show the relationship between ef-
ficient plan and optimal plan. Simply put, these two tax plans coincide 
only when the degree of heterogeneity is sufficiently small. For exam-
ple, we can learn from Fig.  2(a)(b) that with small heterogeneity 𝜆𝐴∕𝜆𝐵 , 
𝑣(𝜃∗) = 𝑦(𝜃∗∗) for all 𝜆̄, which is consistent with Proposition  1(b). 
However, with large 𝜆𝐴∕𝜆𝐵 , we see from Fig.  2(c)(d) that 𝑣(𝜃∗) < 𝑦(𝜃∗∗). 
Intuitively, this is because an optimal plan only addresses the interests 
of signatories, while an efficient plan concerns the overall payoffs of 
all countries. Under our tax system, there is a large gap between the 
payoffs of different types of signatories when heterogeneity is large. 
Sometimes, an optimal plan will ensure that only type 𝐴 countries join 
the coalition, while an efficient plan has the incentive to attract type 𝐵
countries to participate as well, resulting in 𝑣(𝜃∗) < 𝑦(𝜃∗∗).

Finally, we discuss the impact of 𝜆𝐴𝜆𝐵  and 𝜆̄ on 𝜇, the relative welfare 
gap between socially optimal level 𝑈 (𝒑∗) and efficient level 𝑣(𝜃∗). 
Again, we consider example 𝐺 (

3, 2, 𝜆𝐴, 𝜆𝐵
)

. From Fig.  3, we can see 
that 𝜇 increases with 𝜆𝐴∕𝜆𝐵 and is invariant to 𝜆̄, which generalizes 
the condition of Proposition  3 to a large range of 𝜆𝐴∕𝜆𝐵 .

In summary, with a large degree of heterogeneity, the simulations 
in this section suggest that most results in Propositions  1 and 3 are 
still true, with some notable exceptions: (a) a partial coalition may be 
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Fig. 1. Impact of 𝜆𝐴∕𝜆𝐵 on 𝑣(𝜃) and 𝑦(𝜃): 𝐺
(

3, 2, 𝜆𝐴, 𝜆𝐵
)

, 𝜆̄ fixed.

Fig. 2. Impact of 𝜆̄ on 𝑣(𝜃∗) and 𝑦(𝜃∗∗): 𝐺 (

3, 2, 𝜆𝐴, 𝜆𝐵
)

, 𝜆𝐴∕𝜆𝐵 fixed.
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Fig. 3. Impact of 𝜆𝐴
𝜆𝐵

 and 𝜆̄ on 𝜇: 𝐺 (

3, 2, 𝜆𝐴, 𝜆𝐵
)

.

formed under 𝜃∗ or 𝜃∗∗; (b) an optimal plan 𝜃∗∗ may induce only type 
𝐴 countries to participate, while an efficient plan 𝜃∗ sometimes attracts 
more signatories than 𝜃∗∗ does.

7. Conclusion

We examine the regulation of carbon abatement through an en-
dogenously designed tax system in an IEA model with two types of 
countries that differ in their abatement benefits. To this end, we extend 
the traditional IEA game and add a preceding stage in which a tax 
plan is designed, and develop an algorithm to find a tax plan that 
maximizes social welfare or average coalition payoff under a stable 
coalition. In contrast, some early IEA models concern the corresponding 
payoffs for all possible coalitions and thus impose more restrictions on 
the design of IEA rules than our model does. By abandoning these re-
dundant requirements on non-stable coalitions, our tax plans are more 
flexible than traditional IEA rules. This leads to two main theoretical 
contributions of this study.

First, our tax plans are better at creating more cooperation and can 
result in a preferable outcome than traditional tax systems in terms of 
coalition size and abatement level. Specifically, full cooperation results 
when heterogeneity is sufficiently small. However, the performance of 
the IEA may degrade when heterogeneity increases, mainly because 
heterogeneity somehow creates difficulty in reconciling different coun-
tries when they voluntarily sign the IEA (especially in the absence of 
international transfers).

Second, if a tax plan is properly designed in stage one of the 
game, the coalition structure that results in stage two can be uniquely 
identified. These tax plans (named essential plans in this study) could 
help us avoid some technical difficulties caused by the non-existence 
and non-uniqueness of stable coalitions.

Our conclusions have some implications for practical climate policy. 
To induce a proper ratio of countries to cooperate, a proper tax system 
should not consist of a single tax rate but instead a list of tax rates 
that are contingent on the coalition formed and on country’s abatement 
benefit. Except for the one implemented in equilibrium, all other tax 
rates in this list serve as a rule for punishing free-riding behavior. Also 
note that even if we can, sometimes it is not efficient to get all countries 
involved in cooperation, especially for those that hardly benefit from 
carbon abatement.

Overall, the results of this study provide a highly optimistic as-
sessment of the role a proper tax system can play in international 
environmental cooperation. However, many factors that could pose 
practical challenges to the theory are not considered in this paper. 
For instance, designing a tax plan requires coordination among a large 
number of diverse countries globally and consideration of the impacts 
of various uncertainties on the plan.14 Therefore, the design of a proper 

14 For example, parameter uncertainty, participation uncertainty, and so 
on. See Na and Shin (1998), Fujita (2004), Kolstad (2007), Dellink et al. 
(2008), Hong and Karp (2014), Nkuiya et al. (2015), Meya et al. (2018), 
and Mao (2020) for analyses of different types of uncertainty in IEAs.
9 
tax system in practice remains challenging. On the one hand, we 
believe that more complex and realistic model setups (for example, with 
more general benefit function rather than linear benefit function) and 
tax systems (for example, those that allow for more general tax plan 
functions, such as 𝑝𝑖 = 𝜃 (𝜔)+𝑓

(

𝜆𝑖, 𝑚𝑖
)

, where 𝑓 (

𝜆𝑖, 𝑚𝑖
) is also designed 

by the organizer) are worthy of future research. On the other hand, 
given real-world complexities, it is also advisable to further explore 
simpler and more practical tax plan designs. For instance, a tax rate 
could be based solely on the ratio of the total emissions of all signatory 
countries to global emissions, instead of on the coalition structure.
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